博客
关于我
因子分解机FM算法原理
阅读量:281 次
发布时间:2019-03-01

本文共 518 字,大约阅读时间需要 1 分钟。

因子分解机(Factorization Machines, FM)是一种近年来在机器学习领域引起广泛关注的新型模型,旨在解决因子分解问题。它结合了传统矩阵分解和深度学习技术的优势,适用于多种数据建模场景。

FM算法的核心思想是将一个高维的矩阵分解为低秩的因子叠加。与传统的矩阵分解方法相比,FM能够更好地捕捉数据中的低维结构特征。其核心公式可以表示为:

[ A = \sum_{i=1}^r g_i x_i y_i^T ]

其中,( A ) 是原矩阵,( r ) 是因子数量,( x_i ) 和 ( y_i ) 是对应的行和列因子,( g_i ) 是每个因子的权重。

FM算法的主要优势体现在以下几个方面:

  • 低计算复杂度:FM通过引入稀疏性假设,减少了计算量,尤其在数据稀疏的情况下表现优异。

  • 灵活性强:可以处理各种类型的数据矩阵,包括非正则化的数据和小规模的数据。

  • 适用性广:应用于推荐系统、自然语言处理、计算机视觉等多个领域。

  • FM模型的训练过程通常采用梯度下降等优化算法,通过逐步更新参数来优化预测结果。其性能表现通常与传统矩阵分解方法相当,甚至在某些复杂场景下表现更优。

    如果需要更深入了解FM算法,可以参考相关论文或技术文档。

    转载地址:http://xtkx.baihongyu.com/

    你可能感兴趣的文章
    NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
    查看>>
    NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
    查看>>
    NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
    查看>>
    NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
    查看>>
    NIH发布包含10600张CT图像数据库 为AI算法测试铺路
    查看>>
    Nim教程【十二】
    查看>>
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO三大组件基础知识
    查看>>
    NIO与零拷贝和AIO
    查看>>
    NIO同步网络编程
    查看>>
    NIO基于UDP协议的网络编程
    查看>>