博客
关于我
因子分解机FM算法原理
阅读量:281 次
发布时间:2019-03-01

本文共 518 字,大约阅读时间需要 1 分钟。

因子分解机(Factorization Machines, FM)是一种近年来在机器学习领域引起广泛关注的新型模型,旨在解决因子分解问题。它结合了传统矩阵分解和深度学习技术的优势,适用于多种数据建模场景。

FM算法的核心思想是将一个高维的矩阵分解为低秩的因子叠加。与传统的矩阵分解方法相比,FM能够更好地捕捉数据中的低维结构特征。其核心公式可以表示为:

[ A = \sum_{i=1}^r g_i x_i y_i^T ]

其中,( A ) 是原矩阵,( r ) 是因子数量,( x_i ) 和 ( y_i ) 是对应的行和列因子,( g_i ) 是每个因子的权重。

FM算法的主要优势体现在以下几个方面:

  • 低计算复杂度:FM通过引入稀疏性假设,减少了计算量,尤其在数据稀疏的情况下表现优异。

  • 灵活性强:可以处理各种类型的数据矩阵,包括非正则化的数据和小规模的数据。

  • 适用性广:应用于推荐系统、自然语言处理、计算机视觉等多个领域。

  • FM模型的训练过程通常采用梯度下降等优化算法,通过逐步更新参数来优化预测结果。其性能表现通常与传统矩阵分解方法相当,甚至在某些复杂场景下表现更优。

    如果需要更深入了解FM算法,可以参考相关论文或技术文档。

    转载地址:http://xtkx.baihongyu.com/

    你可能感兴趣的文章
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy绘制热力图
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
    查看>>
    NutzWk 5.1.5 发布,Java 微服务分布式开发框架
    查看>>
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    NVelocity标签使用详解
    查看>>
    Nvidia Cudatoolkit 与 Conda Cudatoolkit
    查看>>
    NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
    查看>>
    NVIDIA-cuda-cudnn下载地址
    查看>>
    nvidia-htop 使用教程
    查看>>
    nvidia-smi 参数详解
    查看>>
    nyoj58 最少步数
    查看>>
    OAuth2 Provider 项目常见问题解决方案
    查看>>
    Vue.js 学习总结(14)—— Vue3 为什么推荐使用 ref 而不是 reactive
    查看>>
    oauth2-shiro 添加 redis 实现版本
    查看>>
    OAuth2.0_JWT令牌-生成令牌和校验令牌_Spring Security OAuth2.0认证授权---springcloud工作笔记148
    查看>>
    OAuth2.0_JWT令牌介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记147
    查看>>
    OAuth2.0_介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记137
    查看>>
    OAuth2.0_完善环境配置_把资源微服务客户端信息_授权码存入到数据库_Spring Security OAuth2.0认证授权---springcloud工作笔记149
    查看>>